Efficient seed-mediated method for the large-scale synthesis of Au nanorods

نویسندگان

  • Waqqar Ahmed
  • Arshad Saleem Bhatti
  • Jan M. van Ruitenbeek
چکیده

Seed-mediated methods are widely followed for the synthesis of Au nanorods (NRs). However, mostly dilute concentrations of the Au precursor (HAuCl4) are used in the growth solution, which leads to a low final concentration of NRs. Attempts of increasing the concentration of NRs by simply increasing the concentration of HAuCl4, other reagents in the growth solution and seeds lead to a faster growth kinetics which is not favourable for NR growth. Herein, we demonstrate that the increase in growth kinetics for high concentrations of reagents in growth solution can be neutralised by decreasing the pH of the solution. The synthesis of the NRs can be scaled up by using higher concentrations of reagents and adding an optimum concentration of HCl in the growth solution. The concentration of HAuCl4 in the growth solution can be increased up to 5 mM, and 10-20 times more NRs can be synthesised for the same reaction volume compared to that of the conventional seed-mediated method. We have also noticed that a cetyltrimethylammonium bromide (CTAB)-to-HAuCl4 molar ratio of 50 is sufficient for obtaining high yield of NRs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Size-Controlled Synthesis of Gold Nanostars and Their Characterizations and Plasmon Resonances

Gold nanostar particles were synthesized using seed-mediated method. Au-seed was synthesized with the diameter of approximately 3 nm and a considerably low STDEV of less than 1 nm. Then, different amount of Au seed was introduced into the growth solution of nanostars and the influence of the changes in concentration of Au seed on the growth process was investigated. The size of gold nanostars i...

متن کامل

Synthesis and manipulation of high aspect ratio gold nanorods grown directly on surfaces.

Here we describe the synthesis of Au nanorods directly on glass surfaces using seed-mediated deposition of Au from AuCl4- onto surface-attached 3-5 nm diameter Au nanoparticles (AuNPs) in the presence of cetyltrimethylammonium bromide (CTAB). The average length (200 nm to 1.2 microm) and aspect ratio (6-22) of the nanorods increases with increasing AuCl4- concentration. Short, low aspect ratio ...

متن کامل

Directly monitoring the growth of gold nanoparticle seeds into gold nanorods.

This paper describes the use of atomic force microscopy to directly image surface-attached 3-5 nm diameter gold nanoparticle seeds before and after seed-mediated growth into gold nanorods (Au NRs) and other shapes (spheres, triangles, and hexagons). Results show that Au NRs form from seeds growing in either one or two directions. A direct correlation exists between seed diameter and NR diameter...

متن کامل

Facile Growth of High-Yield Gold Nanobipyramids Induced by Chloroplatinic Acid for High Refractive Index Sensing Properties

Au nanobipyramids (NBPs) have attracted great attention because of their unique localized surface plasmon resonance properties. However, the current growth methods always have low yield or suffer tedious process. Developing new ways to direct synthesis of high-yield Au NBPs using common agents is therefore desirable. Here, we employed chloroplatinic acid as the key shape-directing agent for the...

متن کامل

A Sub-Microanalysis Approach in Chemical Characterisation of Gold Nanorods Formed by a Novel Polymer-Immobilised Gold Seeds Base

Gold nanorods (GNRs) have been fabricated by a novel polymer-immobilised seed mediated method using ultraviolet (UV) photoreduced gold-polymethylmethacrylate (Au-PMMA) nanocomposites as a seed platform and characterised at sub-micron scale regime with synchrotron-based techniques; near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and X-ray fluorescence (XRF) mapping. In this repor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2017